Geometric Numerical Integration of Nonholonomic Systems and Optimal Control Problems
نویسندگان
چکیده
A geometric derivation of numerical integrators for nonholonomic systems and optimal control problems is obtained. It is based in the classical technique of generating functions adapted to the special features of nonholonomic systems and optimal control problems.
منابع مشابه
On the Construction of Variational Integrators for Optimal Control of Nonholonomic Mechanical Systems
In this paper we derive variational integrators for optimal control problems of nonholonomic mechanical systems. We rewrite the system as a constrained second-order variational problem, that is, as a problem where the Lagrangian and constraints are defined in terms of the position, velocity and the acceleration of the system. Instead of discretizing directly the equations of motion, we discreti...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملNumerical method for solving optimal control problem of the linear differential systems with inequality constraints
In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...
متن کاملOptimal gait selection for nonholonomic locomotion systems
This paper addresses the optimal control and selection of gaits in a class of nonholonomic locomotion systems that exhibit group symmetries. We study optimal gaits for the snakeboard, a representative example of this class of systems. We employ Lagrangian reduction techniques to simplify the optimal control problem and describe a general framework and an algorithm to obtain numerical solutions ...
متن کاملOptimal Gait Selection for Nonholonomic Locomotion
This paper addresses the optimal control and selection of gaits in a class of nonholonomic locomotion systems that exhibit group symmetries. We study optimal gaits for the snakeboard, a representative example of this class of systems. We employ Lagrangian reduction techniques to simplify the optimal control problem and describe a general framework and an algorithm to obtain numerical solutions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Control
دوره 10 شماره
صفحات -
تاریخ انتشار 2004